
Python & DevOps
Your own heroku

jib.li

http://jib.li/

@sp4ke

● Freelance Full Stack Developer / DevOps
● CTO & CoFounder at Jib.li
● Python Enthusiast

http://twitter.com/sp4ke

Summary

1. Environment & Stack

2. Agile deployment with uWSGI

1. Environment & Stack

Our needs:
● Web Application
● Deep linking with social networks
● Agile development
● Community and available packages

1. Environment & Stack

Our needs:
● Web Application
● Deep linking with social networks
● Agile development
● Community and available packages

= Django + MongoDB + Github

1. Environment & Stack

Our needs:
● Web Application
● Deep linking with social networks
● Agile development
● Community and available packages

= Django + MongoDB + Github
gevent-socketio, zmq, celery, AWS boto ...

1. Environment & Stack

Local environment : The essentials

● Virtualenv
● PIP

1. Environment & Stack

Local environment : The essentials

● Virtualenv
● PIP
● But they have RVM !

1. Environment & Stack

Local environment : The essentials

● Virtualenv
● PIP
● But they have RVM !
● Pythonbrew: utahta/pythonbrew.git

about:blank

1. Environment & Stack

● Pythonbrew: utahta/pythonbrew.git
○ Compile system independent pythons
$ pythonbrew install 2.7.3
$ pythonbrew use 2.7.3
$ pythonbrew list && which python
pythonbrew pythons
 Python-2.7.3 (*)
/home/spike/.pythonbrew/pythons/Python-2.7.3/bin/python

https://github.com/utahta/pythonbrew.git

1. Environment & Stack

● Pythonbrew: utahta/pythonbrew.git
○ Easy management of virtualenvs
$ pythonbrew venv create jibli
$ pythonbrew venv use jibli && which python && which pip

Using `jibli` environment
To leave an environment, simply run `deactivate`
/home/spike/.pythonbrew/venvs/Python-2.7.3/jibli/bin/python
/home/spike/.pythonbrew/venvs/Python-2.7.3/jibli/bin/pip

https://github.com/utahta/pythonbrew.git

1. Environment & Stack

Environment bootstrap:
git clone jibli/project && cd project
pythonbrew create venv jibli && pythonbrew activate jibli
pip install -r dependencies.txt

1. Environment & Stack

Environment bootstrap:
git clone jibli/project && cd project
pythonbrew create venv jibli && pythonbrew activate jibli
pip install -r dependencies.txt --download-cache=CACHE

1. Environment & Stack

pip & dependencies.txt:

package-foo don't
package-bar==4.2 do

1. Environment & Stack

pip & dependencies.txt:

package-foo
package-bar==4.2

git+https://github.com/user/repo

1. Environment & Stack

pip & dependencies.txt:

package-foo
package-bar==4.2

git+https://github.com/user/repo
git+https://github.com/user/repo#egg=mon-package

1. Environment & Stack

pip & dependencies.txt:

package-foo
package-bar==4.2

git+https://github.com/user/repo
git+https://github.com/user/repo#egg=mon-package
git+https://github.com/user/repo@branch

1. Environment & Stack

pip & dependencies.txt:

● Quick dependencies update

pip freeze > dependencies.txt

package-foo
package-bar==4.2

git+https://github.com/user/repo
git+https://github.com/user/repo#egg=mon-package
git+https://github.com/user/repo@branch

1. Environment & Stack

MongoDB

● NoSQL, Schemaless, Document Oriented
● BSON data format
● Advantage: Python Dict -> JSON
● Good Python API pymongo

1. Environment & Stack

MongoDB
● MongoDB Javascript Console

$ mongo jibli
MongoDB shell version: 2.0.6
connecting to: jibli
> db.users.find({'profil.age': 10});

1. Environment & Stack

MongoDB
● MongoDB Javascript Console

$ mongo jibli
MongoDB shell version: 2.0.6
connecting to: jibli
> db.users.find({'profil.age': 10});

● PyMongo equivalent
u = pymongo.Connection(host='localhost', port=27017)['jibli']['users']
u.find({'profil.age': 10})

2. Agile deployment with uWSGI

Local development

● Git branch feature
● Unit test
● Implement
● Test on local server (./manage.py runserver)
● Commit and merge on master branch

2. Agile deployment with uWSGI

 Agile deployment

● Many features require a production like environment:
○ OAuth Authentication and Social Networks
○ Async tasks, Celery (notifications, crons ...)
○ Push Notifications
○ Hard to clone a production environment in local

2. Agile deployment with uWSGI

● Development Scenario
○ Start a new feature

$ git checkout -b feature

2. Agile deployment with uWSGI

● Development Scenario
○ Start a new feature

$ git checkout -b feature
○ Implement and push on dev server

$ fab push

2. Agile deployment with uWSGI

● Development Scenario
○ Start a new feature

$ git checkout -b feature
○ Implement and push on dev server

$ fab push
○ My branch is UP on feature.dev.com

2. Agile deployment with uWSGI

● Development Scenario
○ Start a new feature

$ git checkout -b feature
○ Implement and push on dev server

$ fab push
○ My branch is UP on feature.dev.com
○ Remote access to the deployed app from local shell with a

production environment (ie. restart, upgrade, ipython, mongo
shell ...)

2. Agile deployment with uWSGI

● Development Scenario
○ Start a new feature

$ git checkout -b feature
○ Implement and push on dev server

$ fab push
○ My branch is UP on feature.dev.com
○ Remote access to the deployed app from local shell with a

production environment (ie. restart, upgrade, ipython, mongo
shell ...)

○ Once satisfied merge on master and push on prod

2. Agile deployment with uWSGI

Solution
● Nginx
● Github
● Fabric
+
● uWSGI

2. Agile deployment with uWSGI

Solution
● Nginx
● Github
● Fabric
+
● uWSGI

= your heroku like solution

2. Agile deployment with uWSGI

uWSGI

● Create developement stacks

● Host application clusters

2. Agile deployment with uWSGI

uWSGI
● how ?

Django
AppuWSGI

WSGI Interface
also: FastCGI,CGI, PHP, Rack, ...

Web Server
(nginx)

2. Agile deployment with uWSGI

uWSGI
● how ?

Django
AppuWSGI

Django
App

Django
App

Load balancing

Web Server
(nginx)

2. Agile deployment with uWSGI

uWSGI
● how ?

Django
App2uWSGI

Django
App1

Flask
App3

Router
Proxy

app1.dev.com
app2.dev.com
app3.dev.com

Web Server
(nginx)

2. Agile deployment with uWSGI

uWSGI
● how ?

Django
App2

uWSGI

Django
App1

Flask
App3

Emperor
Massive app
deployment

app1.dev.com
app2.dev.com
app3.dev.com
*.dev.com App n

Web Server
(nginx)

2. Agile deployment with uWSGI

uWSGI Emperor
● Event based dynamic handling of applications (Vassals)

Default:
● Scan for config files in directories (.ini, .xml, .yml, .json ...

)
● dir:// & glob:// for conf files monitoring
● Much more plugins available (mongodb, ampq, ldap ...)

http://uwsgi-docs.readthedocs.org/en/latest/Emperor.html

2. Agile deployment with uWSGI

glob:// plugin

uwsgi --emperor /opt/apps/*/*.ini

2. Agile deployment with uWSGI

glob:// plugin

uwsgi --emperor "/opt/apps/*/*.ini"

One does not simply use glob patterns !

2. Agile deployment with uWSGI

glob:// plugin

uwsgi --emperor "/opt/apps/*/*.ini"
Example:
○ New file "/opt/apps/appn/uwsgi.ini"

● Spawn vassal
○ File modified

● Restart vassal
○ File removed

● Kill vassal
○ Emperor dies

● All vassals die with him

2. Agile deployment with uWSGI

● Create a conf file for each deployed app ?
/opt/apps/app1/uwsgi.ini
/opt/apps/app2/uwsgi.ini
/opt/apps/appn/uwsgi.ini

2. Agile deployment with uWSGI

● Create a conf file for each deployed app ?
/opt/apps/app1/uwsgi.ini
/opt/apps/app2/uwsgi.ini
/opt/apps/appn/uwsgi.ini

● ln -s
○ Use template conf files
/opt/apps/template

ln -s /opt/apps/template /opt/apps/app1/app1.ini

2. Agile deployment with uWSGI

Template conf file (Django App)
[uwsgi]
djangoproject = %d/app/
home = %d/virt
pythonpath = %d/
env = DJANGO_SETTINGS_MODULE=app.settings
chdir = %(djangoproject)
module = uwsgi_app
socket = 127.0.0.1:0
master = true
processes = 1
idle = 300
subscribe-to = 127.0.0.1:9999:%n.dev.com
logto = %d/log/uwsgi.log

2. Agile deployment with uWSGI

Template conf file
[uwsgi]

djangoproject = %d/app/

● Use variables like here djangoproject
● Magic variables :

○ %d - Absolute path to configuration file
○ %n - Name of configuration file without

extension

2. Agile deployment with uWSGI

Template conf file
[uwsgi]

djangoproject = %d/app/
home = %d/virt
pythonpath = %d/
env = DJANGO_SETTINGS_MODULE=app.settings

● Define your app's virtualenv

2. Agile deployment with uWSGI

Template conf file
[uwsgi]

djangoproject = %d/app/
home = %d/virt
pythonpath = %d/
env = DJANGO_SETTINGS_MODULE=app.settings

● Define your app's virtualenv
● Python search paths (You can repeat this one)

2. Agile deployment with uWSGI

Template conf file
[uwsgi]

djangoproject = %d/app/
home = %d/virt
pythonpath = %d/
env = DJANGO_SETTINGS_MODULE=app.settings

● Define your app's virtualenv
● Python search paths (You can repeat this one)
● Custom environment variables

2. Agile deployment with uWSGI

Template conf file (Django App)

[uwsgi]

chdir = %(djangoproject)
module = uwsgi_app

● Which module to run when starting application
○ django.core.handlers.wsgi:WSGIHandler()

● Best spot to run your custom scripts and setup
environment before launching application
○ ie. compile static, zMQ sockets, syncdb ...

2. Agile deployment with uWSGI

Up until now we can:
○ Git push origin feature
○ Clone feature in remote /opt/apps/feature
○ Prepare dirs structure
○ Create venv & install dependencies
○ Symllink to the uWSGI template file
○ uWSGI emperor launches feature app
We still need to:
○ access our feature using subdomains

● feature.dev.com

2. Agile deployment with uWSGI

FastRouter
○ Proxy/Load Balancing/Router
○ Speaks uWSGI protocol
○ Unlimited setup possibilities
○ Key/Value store

2. Agile deployment with uWSGI

FastRouter
○ Proxy/Load Balancing/Router
○ Speaks uWSGI protocol
○ Unlimited setup possibilities
○ Key/Value store

Example:
uwsgi --fastrouter /tmp/fastrouter.socket \ --
fastrouter-subscription-server 127.0.0.1:9999

2. Agile deployment with uWSGI

Always use unix sockets instead of localhost tcp

2. Agile deployment with uWSGI

Nginx
server {
 listen 80;
 server_name dev.com *.dev.com;
 location / {
 include /etc/nginx/uwsgi_params;
 uwsgi_param UWSGI_FASTROUTER_KEY $host;
 uwsgi_pass unix: /tmp/fastrouter.socket;
 }
}

2. Agile deployment with uWSGI

Template conf file (Django App)

[uwsgi]

...
socket = 127.0.0.1:0

subscribe-to = 127.0.0.1:9999:%n.dev.com

2. Agile deployment with uWSGI

Template conf file (Django App)

[uwsgi]

...
socket = 127.0.0.1:0

subscribe-to = 127.0.0.1:9999:%n.dev.com

/opt/apps/feature1/feature1.ini

2. Agile deployment with uWSGI

nginx

uWSGI emperor

Request on feature1.dev.com

Fastrouteur + Subscription server
{
 'feature1.dev.com' : 127.0.0.1:n1,
 'feautre2.dev.com' : 127.0.0.1:n2,
 ...
 }

feature2feature1

2. Agile deployment with uWSGI

├─ supervisord
│ ├─ /uwsgi --fastrouter ... --emperor /opt/apps/*/*.ini
│ │ ├─ /usr/local/bin/uwsgi
│ │ └─ /usr/local/bin/uwsgi
│ │ ├─uwsgi --ini /opt/apps/feature1/feature1.ini

#fastrouter
#master

HTOP Deploying feature1

2. Agile deployment with uWSGI

├─ supervisord
│ ├─ /uwsgi --fastrouter ... --emperor /opt/apps/*/*.ini
│ │ ├─ /usr/local/bin/uwsgi
│ │ └─ /usr/local/bin/uwsgi
│ │ ├─uwsgi --ini /opt/apps/feature1/feature1.ini
│ │ └─uwsgi --ini /opt/apps/feature2/frature2.ini

#fastrouter
#master

HTOP Deploying feature2

End

twitter: @sp4ke
email: spike@jib.li

slides: sp4ke.com/pythondevops

	Slide 1
	Chakib Benziane
	Summary
	Environment & Stack
	Environment & Stack
	Environment & Stack
	Environment & Stack
	Environment & Stack
	Environment & Stack
	Environment & Stack
	Environment & Stack
	Environment & Stack
	Environment & Stack
	Environment & Stack
	Environment & Stack
	Environment & Stack
	Environment & Stack
	Environment & Stack
	1. Environment & Stack
	1. Environment & Stack
	1. Environment & Stack
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	2. Agile deployment with uWSGI
	End

