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Our needs: 
● Web Application 
● Deep linking with social networks
● Agile development
● Community and available packages

= Django + MongoDB + Github
gevent-socketio, zmq, celery, AWS boto ...
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Local environment : The essentials

● Virtualenv 
● PIP 
● But they have RVM !
● Pythonbrew: utahta/pythonbrew.git

about:blank


1. Environment & Stack

● Pythonbrew: utahta/pythonbrew.git
○ Compile system independent pythons
$ pythonbrew install 2.7.3
$ pythonbrew use 2.7.3
$ pythonbrew list && which python
# pythonbrew pythons
  Python-2.7.3 (*)
/home/spike/.pythonbrew/pythons/Python-2.7.3/bin/python

https://github.com/utahta/pythonbrew.git


1. Environment & Stack

● Pythonbrew: utahta/pythonbrew.git
○ Easy management of virtualenvs
$ pythonbrew venv create jibli
$ pythonbrew venv use jibli && which python && which pip

# Using `jibli` environment
# To leave an environment, simply run `deactivate`
/home/spike/.pythonbrew/venvs/Python-2.7.3/jibli/bin/python
/home/spike/.pythonbrew/venvs/Python-2.7.3/jibli/bin/pip

https://github.com/utahta/pythonbrew.git


1. Environment & Stack

Environment bootstrap:
git clone jibli/project && cd project
pythonbrew create venv jibli && pythonbrew activate jibli
pip install -r dependencies.txt
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Environment bootstrap:
git clone jibli/project && cd project
pythonbrew create venv jibli && pythonbrew activate jibli
pip install -r dependencies.txt --download-cache=CACHE
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package-bar==4.2                                  do
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1. Environment & Stack

pip & dependencies.txt: 

● Quick dependencies update

pip freeze > dependencies.txt

package-foo 
package-bar==4.2

git+https://github.com/user/repo
git+https://github.com/user/repo#egg=mon-package
git+https://github.com/user/repo@branch



1. Environment & Stack

MongoDB

● NoSQL, Schemaless, Document Oriented
● BSON data format
● Advantage: Python Dict -> JSON
● Good Python API pymongo 



1. Environment & Stack

MongoDB
● MongoDB Javascript Console

$ mongo jibli
MongoDB shell version: 2.0.6
connecting to: jibli
> db.users.find( {'profil.age': 10} );



1. Environment & Stack

MongoDB
● MongoDB Javascript Console

$ mongo jibli
MongoDB shell version: 2.0.6
connecting to: jibli
> db.users.find( {'profil.age': 10} );

● PyMongo equivalent
u = pymongo.Connection(host='localhost', port=27017)['jibli']['users']
u.find( {'profil.age': 10} )



2. Agile deployment with uWSGI

Local development
 

● Git branch feature
● Unit test
● Implement
● Test on local server (./manage.py runserver)
● Commit and merge on master branch



2. Agile deployment with uWSGI

          Agile deployment

● Many features require a production like environment:
○ OAuth Authentication and Social Networks
○ Async tasks, Celery (notifications, crons ... )
○ Push Notifications
○ Hard to clone a production environment in local
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● Development Scenario
○ Start a new feature

$ git checkout -b feature
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● Development Scenario
○ Start a new feature

$ git checkout -b feature
○ Implement and push on dev server

$ fab push
○ My branch is UP on feature.dev.com
○ Remote access to the deployed app from local shell with a 

production environment (ie. restart, upgrade, ipython, mongo 
shell ...)

○ Once satisfied merge on master and push on prod
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Solution
● Nginx
● Github
● Fabric
+
● uWSGI



2. Agile deployment with uWSGI

Solution
● Nginx
● Github
● Fabric
+
● uWSGI

= your heroku like solution



2. Agile deployment with uWSGI

uWSGI

● Create developement stacks

● Host application clusters



2. Agile deployment with uWSGI

uWSGI
● how  ?

Django
AppuWSGI

WSGI Interface
also: FastCGI,CGI, PHP, Rack, ...

Web Server
(nginx)
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uWSGI
● how  ?

Django
AppuWSGI

Django
App

Django
App

Load balancing

Web Server
(nginx)
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uWSGI
● how  ?

Django
App2uWSGI

Django
App1

Flask
App3

Router
Proxy

app1.dev.com
app2.dev.com
app3.dev.com

Web Server
(nginx)



2. Agile deployment with uWSGI

uWSGI
● how  ?

Django
App2

uWSGI

Django
App1

Flask
App3

Emperor
Massive app 
deployment

app1.dev.com
app2.dev.com
app3.dev.com
*.dev.com App n

Web Server
(nginx)



2. Agile deployment with uWSGI

uWSGI Emperor
● Event based dynamic handling of applications (Vassals) 

Default: 
● Scan for config files in directories (.ini, .xml, .yml, .json ... 

)
● dir:// & glob:// for conf files monitoring
● Much more plugins available (mongodb, ampq, ldap ... )

http://uwsgi-docs.readthedocs.org/en/latest/Emperor.html


2. Agile deployment with uWSGI

glob:// plugin

uwsgi --emperor /opt/apps/*/*.ini



2. Agile deployment with uWSGI

glob:// plugin

uwsgi --emperor "/opt/apps/*/*.ini"

One does not simply use glob patterns !



2. Agile deployment with uWSGI

glob:// plugin

uwsgi --emperor "/opt/apps/*/*.ini"
Example:
○ New file "/opt/apps/appn/uwsgi.ini"

● Spawn vassal
○ File modified

● Restart vassal
○ File removed

● Kill vassal
○ Emperor dies

● All vassals die with him



2. Agile deployment with uWSGI

● Create a conf file for each deployed app ?
/opt/apps/app1/uwsgi.ini
/opt/apps/app2/uwsgi.ini
/opt/apps/appn/uwsgi.ini



2. Agile deployment with uWSGI

● Create a conf file for each deployed app ?
/opt/apps/app1/uwsgi.ini
/opt/apps/app2/uwsgi.ini
/opt/apps/appn/uwsgi.ini

● ln -s 
○ Use template conf files
/opt/apps/template

ln -s /opt/apps/template /opt/apps/app1/app1.ini



2. Agile deployment with uWSGI

Template conf file (Django App)
[uwsgi]
djangoproject = %d/app/
home = %d/virt
pythonpath = %d/
env = DJANGO_SETTINGS_MODULE=app.settings
chdir = %(djangoproject)
module = uwsgi_app
socket = 127.0.0.1:0
master = true
processes = 1
idle = 300
subscribe-to = 127.0.0.1:9999:%n.dev.com
logto = %d/log/uwsgi.log



2. Agile deployment with uWSGI

Template conf file
[uwsgi]

djangoproject = %d/app/

● Use variables like here djangoproject
● Magic variables :

○ %d - Absolute path to configuration file
○ %n - Name of configuration file without 

extension



2. Agile deployment with uWSGI

Template conf file
[uwsgi]

djangoproject = %d/app/
home = %d/virt
pythonpath = %d/
env = DJANGO_SETTINGS_MODULE=app.settings

● Define your app's virtualenv
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● Python search paths (You can repeat this one)



2. Agile deployment with uWSGI

Template conf file
[uwsgi]

djangoproject = %d/app/
home = %d/virt
pythonpath = %d/
env = DJANGO_SETTINGS_MODULE=app.settings

● Define your app's virtualenv
● Python search paths (You can repeat this one) 
● Custom environment variables



2. Agile deployment with uWSGI

Template conf file (Django App)

[uwsgi]

chdir = %(djangoproject)
module = uwsgi_app

● Which module to run when starting application 
○ django.core.handlers.wsgi:WSGIHandler()

● Best spot to run your custom  scripts and setup 
environment before launching application 
○ ie. compile static, zMQ sockets, syncdb ...



2. Agile deployment with uWSGI

Up until now we can:
○ Git push origin feature
○ Clone feature in remote /opt/apps/feature
○ Prepare dirs structure
○ Create venv & install dependencies
○ Symllink to the uWSGI template file
○ uWSGI emperor launches feature app
We still need to: 
○ access our feature using subdomains

● feature.dev.com



2. Agile deployment with uWSGI

FastRouter
○ Proxy/Load Balancing/Router
○ Speaks uWSGI protocol
○ Unlimited setup possibilities
○ Key/Value store



2. Agile deployment with uWSGI

FastRouter
○ Proxy/Load Balancing/Router
○ Speaks uWSGI protocol
○ Unlimited setup possibilities
○ Key/Value store

Example: 
uwsgi --fastrouter  /tmp/fastrouter.socket  \ --
fastrouter-subscription-server 127.0.0.1:9999



2. Agile deployment with uWSGI

Always use unix sockets instead of localhost tcp



2. Agile deployment with uWSGI

Nginx 
server {
        listen                  80;
        server_name             dev.com *.dev.com;
        location / {
                include /etc/nginx/uwsgi_params;
                uwsgi_param UWSGI_FASTROUTER_KEY $host;
                uwsgi_pass unix: /tmp/fastrouter.socket;
        }
}



2. Agile deployment with uWSGI

Template conf file (Django App)

[uwsgi]

...
socket = 127.0.0.1:0

subscribe-to = 127.0.0.1:9999:%n.dev.com



2. Agile deployment with uWSGI

Template conf file (Django App)

[uwsgi]

...
socket = 127.0.0.1:0

subscribe-to = 127.0.0.1:9999:%n.dev.com

/opt/apps/feature1/feature1.ini



2. Agile deployment with uWSGI

nginx

uWSGI emperor

Request on feature1.dev.com

Fastrouteur + Subscription server
{
  'feature1.dev.com' :    127.0.0.1:n1,
  'feautre2.dev.com' :     127.0.0.1:n2,
   ...
 }

feature2feature1



2. Agile deployment with uWSGI

├─ supervisord 
│  ├─ /uwsgi --fastrouter ... --emperor /opt/apps/*/*.ini
│  │  ├─ /usr/local/bin/uwsgi    
│  │  └─ /usr/local/bin/uwsgi
│  │     ├─uwsgi --ini /opt/apps/feature1/feature1.ini

#fastrouter
#master

HTOP               Deploying feature1



2. Agile deployment with uWSGI

├─ supervisord 
│  ├─ /uwsgi --fastrouter ... --emperor /opt/apps/*/*.ini
│  │  ├─ /usr/local/bin/uwsgi    
│  │  └─ /usr/local/bin/uwsgi
│  │     ├─uwsgi --ini /opt/apps/feature1/feature1.ini
│  │     └─uwsgi --ini /opt/apps/feature2/frature2.ini

#fastrouter
#master

HTOP               Deploying feature2



End

twitter: @sp4ke
email: spike@jib.li

slides: sp4ke.com/pythondevops
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